High nitrification rate at low pH in a fluidized bed reactor with chalk as the biofilm carrier.

نویسندگان

  • S Tarre
  • M Beliavski
  • N Denekamp
  • A Gieseke
  • D de Beer
  • M Green
چکیده

A typical steady state bulk pH of about 5 was established in a nitrifying fluidized bed with chalk as the only buffer agent. In spite of the low pH, high rate nitrification was observed with the nitrification kinetic parameters in the chalk reactor similar to those of biological reactors operating at pH>7. Various methods were used to determine the reasons for high rate nitrification at such low pH including (i) determination of bacterial species, (ii) microsensor measurements in the biofilm, and (iii) comparison of nitrification performance at low pH with a non-chalk fluidized bed reactor. Fluorescence in situ hybridization (FISH) using existing 16S rRNA-targeted oligonucleotide probes showed common nitrifying bacteria in the low pH chalk reactor. The prevalent nitrifying bacteria were identified in the Nitrosomonas oligotropha, Nitrosomonas europeae/eutropha, Nitrosospira and Nitrospira related groups, all well known nitrifiers. Microelectrode measurements showed that the pH in the biofilm was low and similar to that of the bulk pH. Finally, reactor performance using a non-chalk biofilm carrier (sintered glass) with the same bacterial inoculum also showed high rate nitrification below pH 5. The results suggest that inhibition of nitrification at low pH is highly overestimated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wst 49.11-12 B39 Corr

A typical steady state bulk pH of about 5 was established in a nitrifying fluidized bed with chalk as the only buffer agent. In spite of the low pH, high rate nitrification was observed with the nitrification kinetic parameters in the chalk reactor similar to those of biological reactors operating at pH>7. Various methods were used to determine the reasons for high rate nitrification at such lo...

متن کامل

Effect of Dissolved Oxygen and Chemical Oxygen Demand to Nitrogen Ratios on the Partial Nitrification/Denitrification Process in Moving bed Biofilm Reactors

Partial nitrification was reported to be technically feasible and economically favorable, especially for wastewaterwith high ammonium concentration or low C/N ratio. In this study, the effect of dissolved oxygen (DO)and influent ratio of chemical oxygen demand to nitrogen (COD/N) ratio on biological nitrogen removal fromsynthetic wastewater was investigated. Experiments were c...

متن کامل

Biological Phosphorus and Nitrogen Removal from Wastewater Using Moving Bed Biofilm Process

In this research, an experimental study to evaluate nutrient removal from synthetic wastewater by a lab-scale moving bed biofilm process was investigated. Also, kinetic analysis of the process with regard to phosphorus and nitrogen removal was studied with different mathematical models. For nutrient removal, the moving bed biofilm process was applied in series with anaerobic, anoxic and aerobic...

متن کامل

Importance of the operating pH in maintaining the stability of anoxic ammonium oxidation (anammox) activity in moving bed biofilm reactors.

Two bench-scale parallel moving bed biofilm reactors (MBBR) were operated to assess pH-associated anammox activity changes during long term treatment of anaerobically digested sludge centrate pre-treated in a suspended growth partial nitrification reactor. The pH was maintained at 6.5 in reactor R1, while it was allowed to vary naturally between 7.5 and 8.1 in reactor R2. At high nitrogen loads...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Water science and technology : a journal of the International Association on Water Pollution Research

دوره 49 11-12  شماره 

صفحات  -

تاریخ انتشار 2004